MANAGEMENT OF POST-CRANIOTOMY PAIN: past, present & future?

NEUROSIG QUEENSTOWN 2013

Hamish Gray
Christchurch Hospital
New Zealand
Introduction

• Overview of Analgesia in Craniotomy
 • Past, Present & Future
 • PCA, Scalp Blocks, “other analgesics”

• Audit of post-craniotomy analgesia
 • What works in Christchurch

• Conclusions
The Past: Post-operative pain in Neurosurgery

- Traditionally held views:
 - Not too much of a problem
 - IM Codeine/Morphine has been the mainstay of Rx
 - Concerns re sedation v neurological assessment
 - ?effect of opioids on
 - CO$_2$/CBF
 - Miosis
 - PONV
 - Respiratory depression
The Past: Post-operative pain in Neurosurgery

- “There is no post-op pain because movement does not increase tension in tissues of the operative site”
 - Geevarghese KP 1977

- It has traditionally been taught that…….“Pain accompanying intracranial surgery is minimal and when present dangerous to treat”
 - Gottschalk A
Dunbar PJ et al. *Craniotomy procedures are associated with less analgesic requirements than other surgical procedures.* AA. 1999

- Retrospective Chart review (300 notes)
 - Intra-op opioid + PACU pain
 - Intracranial
 - MaxFax
 - Lumbar laminectomies
 - Intracranial procedures had $\frac{1}{2}$ the intra-op opioid (fentanyl) and $\frac{1}{3}$ post-op morphine
 - $\frac{1}{2}$ had no post-op pain
 - Intracranial procedures had lower pain scores
Dunbar PJ et al. **Craniotomy procedures are associated with less analgesic requirements than other surgical procedures.** AA. 1999

- But…….
 - Fentanyl based anaesthetic (mean 514ug)
 - PACU only
Stoneham & Walters 1995. *Post-operative analgesia for craniotomy patients: current attitudes among neuroanaesthetists*

- Survey 183 neuroanaesthetists (110 [60.1%] response)
 - 97% IM Codeine
 - 3% would consider morphine use post-op

- 56% “*post op analgesia inadequate*”

- 37 elective patients
 - 60% “complained” of pain
 - *Pulsating/pounding/heavy/stabbing*
 - 1\(^{st}\) 12 hours worst
 - \(\frac{2}{3}\) “moderate-severe”

> “pain management after neurosurgery is an important, although neglected, clinical problem”
Gottschalk et al 2007: *Prospective evaluation of pain and analgesic use following major elective intracranial surgery*

- 178 patients – craniotomy
 - 69% have moderate – severe pain on D1
 - 48% D2
 - Dissatisfaction with analgesia associated with elevated pain levels

“most patients have moderate – severe pain for the first 2 days after surgery that is often inadequately treated”
Roberts GC 2005. *Post-craniotomy analgesia: current practices in British neurosurgical centres*

- **Background:**
 - "many patients experiencing moderate-severe pain post-operatively"

- **Survey:**
 - 33 neurosurgical centres in UK (70% response)
 - 78% use Codeine only
 - 30% NSAID

- "10 years after Stoneham & Walters post-craniotomy analgesic practices do not appear to have progressed or developed”
- “there is a need for properly structured and methodologically robust studies to investigate the efficacy, safety and appropriateness of morphine PCA in post craniotomy patients”
So…….”post craniotomy pain remains a real headache” Talke 2005

- Studies are difficult to interpret:
 - Differing intra-op anaesthetics + opioid regimes
 - role of fentanyl v remi
 - PACU pain management protocols
 - Subjectivities of pain assessments
 - Lack of power to evaluate side effects

- Incidence and severity of post craniotomy pain significant and most patients do not get good pain relief
 - poor pain management
 - deliberate use of small doses of opioids

- “immediate need for good clinical studies to improve pain management”
Morad AH et al 2009: *Efficacy of iv PCA after supratentorial intracranial surgery: a prospective RCT*

- 79 patients (GA + scalp block)
 - Randomised:
 - PRN 25-50ug fentanyl Q30min
 - PCA 0.5ug/kg fentanyl Q15min

- Results:
 - PCA group:
 - Lower pain scores
 - More Fentanyl (44 v 23 ug/hr........16 hrs)
 - No adverse events/assessment issues (but NOT powered for safety)
 - ?400 patients required
<table>
<thead>
<tr>
<th></th>
<th>No PCA</th>
<th>PCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean overall intraop fentanyl dose (µg)</td>
<td>514 ± 310</td>
<td>506 ± 170</td>
</tr>
<tr>
<td>mean intraop fentanyl dose (µg/kg)</td>
<td>6.82 ± 3.98</td>
<td>6.83 ± 2.49</td>
</tr>
<tr>
<td>mean midazolam dose (mg)</td>
<td>0.429 ± 0.948</td>
<td>0.103 ± 0.409</td>
</tr>
<tr>
<td>dexamethasone</td>
<td>31 (89)</td>
<td>24 (83)</td>
</tr>
<tr>
<td>initial pain score (0-10)</td>
<td>3.62 ± 2.11</td>
<td>2.53 ± 1.96</td>
</tr>
<tr>
<td>mean pain score (0-10)§</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean fentanyl use (µg/hr)§</td>
<td>23.6 ± 23.7</td>
<td>44.1 ± 34.5</td>
</tr>
<tr>
<td>mean fentanyl use by weight (µg/kg/hr)§</td>
<td>0.321 ± 0.320</td>
<td>0.558 ± 0.376</td>
</tr>
</tbody>
</table>

Postop events

- nausea or vomiting: 16 (46) vs. 20 (69)
- pruritus: 2 (6) vs. 5 (17)
- uncontrolled pain: 2 (6) vs. 0 (0)
- uncontrolled nausea/vomiting: 0 (0) vs. 1 (3)
- excessive sedation/respiratory depression: 0 (0) vs. 0 (0)
- neurological deterioration: 1 (3) vs. 2 (7)

- 80 patients randomised
 - 65 completed the study:
 - 31 PCA Fentanyl
 - 34 PRN Fentanyl
 - 1:1 or 1:2 nursing (ie ICU)
 - Continuous electronic monitoring
 - Results PCA group:
 - Increased Fentanyl use
 - Better pain scores
 - ½ incidence of “severe pain” (>6/10)
 - 0% incidence of safety related adverse events [CI 0-9.2%]
Is PCA safe?

Changes in PaCO2 [kPa] after craniotomy

<table>
<thead>
<tr>
<th></th>
<th>Morphine</th>
<th>Tramadol</th>
<th>Codeine</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 min</td>
<td>0.19 (0.51), [-0.8-1.4]</td>
<td>-0.01 (0.50), [-1.0-1.0]</td>
<td>0.13 (0.50), [-1.0-1.5]</td>
</tr>
<tr>
<td>1 h</td>
<td>0.16 (0.53), [-0.90-1.5]</td>
<td>-0.5 (0.78), [-2.7-1.0]</td>
<td>0.06 (0.92), [-3.4-1.2]</td>
</tr>
<tr>
<td>4 h</td>
<td>0.24 (0.58), [-1.1-1.4]</td>
<td>-0.01 (0.59), [-0.7-1.5]</td>
<td>-0.19 (1.0), [-3.2-1.2]</td>
</tr>
<tr>
<td>8 h</td>
<td>-0.13 (0.57), [-0.9-1.2]</td>
<td>-0.29 (0.83), [-1.2-1.7]</td>
<td>-0.88 (0.47), [-0.9-1.1]</td>
</tr>
<tr>
<td>12 h</td>
<td>0.08 (0.44), [-1.0-0.9]</td>
<td>-0.05 (0.72), [-1.2-1.5]</td>
<td>0.01 (0.41), [-0.7-0.9]</td>
</tr>
<tr>
<td>18 h</td>
<td>-0.13 (0.57), [-0.9-1.2]</td>
<td>-0.29 (0.83), [-1.2-1.7]</td>
<td>-0.88 (0.47), [-0.9-1.1]</td>
</tr>
<tr>
<td>24 h</td>
<td>-0.08 (0.54), [-1.0-0.7]</td>
<td>-0.27 (0.78), [-1.6-1.2]</td>
<td>-0.14 (0.57), [-0.8-1.4]</td>
</tr>
</tbody>
</table>

Is PCA safe?

Changes in PaCO2 [kPa] after craniotomy

<table>
<thead>
<tr>
<th></th>
<th>Morphine</th>
<th>Tramadol</th>
<th>Codeine</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 min</td>
<td>0.19 (0.51), [− 0.8–1.4]</td>
<td>− 0.01 (0.50), [− 1.0–1.0]</td>
<td>0.13 (0.50), [− 1.0–1.5]</td>
</tr>
<tr>
<td>1 h</td>
<td>0.16 (0.53), [− 0.90–1.5]</td>
<td>− 0.5 (0.78), [− 2.7–1.0]</td>
<td>0.06 (0.92), [− 3.4–1.2]</td>
</tr>
<tr>
<td>4 h</td>
<td>0.24 (0.58), [− 1.1–1.4]</td>
<td>− 0.01 (0.59), [− 0.7–1.5]</td>
<td>− 0.19 (1.0), [− 3.2–1.2]</td>
</tr>
<tr>
<td>8 h</td>
<td>0.17 (0.43), [− 0.7–1.1]</td>
<td>− 0.07 (0.69), [− 1.5–1.5]</td>
<td>− 0.15 (0.54), [− 1.1–0.7]</td>
</tr>
<tr>
<td>12 h</td>
<td>0.08 (0.44), [− 1.0–0.9]</td>
<td>− 0.05 (0.72), [− 1.2–1.5]</td>
<td>− 0.01 (0.41), [− 0.7–0.9]</td>
</tr>
<tr>
<td>18 h</td>
<td>− 0.13 (0.57), [− 0.9–1.2]</td>
<td>− 0.29 (0.83), [− 1.2–1.7]</td>
<td>− 0.88 (0.47), [− 0.9–1.1]</td>
</tr>
<tr>
<td>24 h</td>
<td>− 0.08 (0.54), [− 1.0–0.7]</td>
<td>− 0.27 (0.78), [− 1.6–1.2]</td>
<td>− 0.14 (0.57), [− 0.8–1.4]</td>
</tr>
</tbody>
</table>

Is PCA safe?
Respiration monitoring

• APSF recommendation
• CO\textsubscript{2} monitoring impractical
• Masimo RRa “listens” for airflow in the trachea
• Well tolerated by patients
• Nurses love it!
Scalp Blocks

• 1st described by Pinosky 1996

• Regional anesthesia to nerves innervating the scalp:
 • Supra-orbital & Supra-trochlear (V_1)
 • Auriculo-temporal (V_2)
 • Post-auricular branches of the Greater Auricular Nerves
 • Occipital nerves
Anaesthesia’s easiest block?
Studies

- Haemodynamic stability to pins
 - Pinosky 1996

- Prolonged analgesia >48hrs (VAS scores)
 - Nguyen 2001

- “Equivalent” transitional analgesia to 0.1mg/kg morphine
 - Ayoub 2006

- Evaluate current evidence about analgesia after craniotomy
- 9 suitable RCTs
 - 519 patients in total looked at 4 modalities
 - Scalp infiltration
 - Scalp nerve block
 - Parecoxib
 - PCA
- Best evidence for scalp LA
Audit: *Post craniotomy analgesia at Christchurch Hospital*

- Predominately 2 anaesthetists involved
- 2 main anaesthetic “techniques”
 - Intra-operative Remifentanil + Morphine
 - Intra-operative Fentanyl + Scalp Blocks
- All patients had:
 - Nurse-administered iv Morphine increments available in PACU
 - LA wound infiltration (at start of craniotomy)
 - Adequate Paracetamol
Results:

Post-Craniotomy Analgesia

- 54 Supratentorial Craniotomies
 - 13 Case Notes Lost
 - 38 Case notes reviewed
 - 3 patients not analysed
 - Post op ICU ventilated
- 12 Scalp Blocks Group SC
- 26 Remi + Morphine Group RM
PACU ANALGESIA

Group No Block/Remi
- 6 (23%) patients had no pain
- 7 (27%) patients had “negative” comments about pain.
- Morphine 0 [9]-17mg
 - Mean 3.26mg
- 1 patient required naloxone infusion

Group Scalp Block
- 9 (75%) patients had no pain
- 1 patient required 3 mg morphine
- 1 patient required single dose (60mg) codeine
Neuro HDU ANALGESIA
1st 24 Hours

Group No Block/Remi
- 15 (58%) required Morphine
 - Dose 7.5-100mg
- 9 (35%) required Codeine PO₄
 - Dose 60-240mg
- Tramadol in 2 patients
- 6 (23%) patients no opioid analgesia

Group Scalp Block
- 2 (16%) patients required Morphine
- 3 (25%) required Codeine PO₄
- Oxynorm in 1 patient
- 7 (58%) patients no opioid analgesia
AUDIT SUMMARY

- Retrospective audit of 2 intra-operative analgesic techniques:
 - Remifentanil & Morphine
 - Fentanyl & Scalp Blocks

- Scalp Blocks:
 - 75% have no pain in PACU (v 23%)
 - 58% require no opioid in 1st 24 hours (v 23%)
Explanations?

- Scalp blocks
 - Audit results broadly consistent with studies

- Remifentanil v Fentanyl
 - Revolutionised neuroanaesthesia practice
 - Control haemodynamics with opioids & still wake the patient up!!!
 - Use has "revealed" problems not seen with other opioids……………..OIH
Opioid-induced Hyperalgesia (OIH)

- Paradoxical sensitisation to pain induced by opioids
- Albutt 1870:
 - “does morphia encourage the very pain it pretends to relieve?”
 - “reliance on morphia only ended in that curious state of perpetuated pain”
- Needs to be differentiated from inadequate Rx and “acute tolerance”
 - Progressive lack of response to a drug which can be overcome with increasing doses
- OIH occurs with remi @ 0.1ug/kg/min >4hrs
“Anti-analgesia”

- “Complex neurobiology and likely to involve more than one system!”

- OIH has some features of both acute tolerance & sensitisation
 - Pre and post-synaptic changes
 - Central, spinal cord & peripheral neuroplastic changes
 - NMDA receptor system
 - ?role of gabapentin & ketamine
 - ?Internalisation of µ receptors
 - Genetics

GE Navigator

- Models:
 - Anaesthetic agents
 - Analgesia
 - Muscle relaxation

- Manual/Automatic inputs

- Allows “easy” fentanyl infusions
 - Target Ce 2-2.2ng/ml
Other analgesics

- iv Paracetamol
 - Post-op discectomy/laminectomy
 - 40 patients randomised to iv paracetamol/placebo
 - Pain scores lower
 - PONV lower
 - Better “subjective” assessment of pain management
 - Morphine consumption same
 - *Improves “quality” of analgesia*

Other analgesics

- Parecoxib:
 - 100 patients randomised to parecoxib v placebo
 - PCA morphine/iv paracetamol/scalp LA
- No differences (out to 24 hrs) in:
 - Morphine use
 - Trend to reduced morphine requirement in PACU
 - 53% v 70% required morphine
 - Median morphine use at 24hrs equivalent
- Pain intensity
- PONV

Williams DL et al. Effect of iv parecoxib on post-craniotomy pain. BJA 2011
Other analgesics

- **Tramadol**
 - 50 patients randomised to 100mg Tramadol BD v “standard” (paracetamol/oxycodone)
 - Reduced:
 - LOS (4 v 3 days)
 - Pain scores
 - Rescue morphine
 - Less total analgesia at lower overall cost

So what do I do?

- Unilateral scalp block
- Intraoperative Fentanyl infusion (550-800ug)
- 1g iv Paracetamol Q6H 1st 24 hrs
- Post-op Fentanyl/Droperidol PCA
- Neuro HDU +/- RRa monitoring (Posterior fossa)
- NSAIDs (Ibuprofen 400mg TDS @ 36hrs)
- Tramadol or Gabapentin for “problem” patients