Mechanisms of Trauma Coagulopathy

Dr B M Schyma
Changi General Hospital
Singapore
A continued cause of PREVENTABLE death.

24% of trauma patients are coagulopathic on arrival\(^1\)
- 56% of severe trauma patients have coagulation abnormalities at 25min (samples taken on scene)

Time to Definitive Haemorrhage Control is a key determinant of outcome \(^3\).

1) Brohi, J Trauma (2003)
2) Floccard et al, Injury (2012)
Coagulopathy is the Harbinger of Mortality

- Pooled data from 5693 patients in 5 countries
- Samples taken on admission

1) Frith et al, J Throm Haemost (2010)
The Triad of Death – The Complete Story?

HYPOTHERMIA

CLOTTING FACTOR LOSS
DILUTION
CONSUMPTION

COAGULOPATHY

ACIDAEMIA

CLOTTING FACTOR DYSFUNCTION
Hypothermia

* BUT…..of 701,491 patients:
 * Only 11,026 (1.57%) had an admission temperature < 35°C

- **CT**: Time to initiation of fibrin formation
- **Alpha Angle**: Rapidity of Fibrin Build up and Cross Linking
- **CFT**: Clot Kinetics (2mm to 20mm)
- **MCF**: Clot strength
Acidosis Impairs the Coagulation: A Thromboelastographic Study

Martin Engström, MD, PhD, Ulf Schött, MD, PhD, Bertil Romner, MD, PhD, and Peter Reinstrup, MD, PhD

$p < 0.00001, r = 0.89$

$p < 0.00001, r = 0.85$
Clot Strength

Maximum Clot Firmness (MCF)

MCF (mm) vs pH
Dilution

Clotting factor DEFICIENCY?

Hypoperfusion in Severely Injured Trauma Patients is Associated With Reduced Coagulation Factor Activity

Jan O. Jansen, MBBS, PhD, FRCS, Sandro Scarpelini, MD, PhD, Ruxandra Pinto, PhD, Homer C. Tien, MD, MSc, FRCS, FACS, Jeannie Callum, MD, FRCPC, and Sandro B. Rizoli, MD, PhD, FRCS, FACS

* 71 Patients, ISS > 15
* Stratified to degree of hypoperfusion by base deficit
* Similar volume of crystalloid
* Venous sample taken on admission
 • Factor assay

1) Jansen et al, J Trauma (2011)
Base Deficit Vs. Factor Activity

1) Jansen et al, J Trauma (2011)
76% factor activity remained in the normal range
42% of patients had no deficiency
Factor 5 behaves differently
- Significant association between BD and factor activity for 2, 7, 9, 10, & 11
- No association between BD and Factor 5 Activity
- Lowest level of activity of all factors
- 54% had a level below normal range
A significant number of our trauma patients arrive with significant coagulopathy.

Mechanisms traditionally thought to cause coagulopathy appear to only occur in extremes.
Is There Something Else?

Acute Traumatic Coagulopathy

Karim Brohi, BSc, FRCS, FRCA, Jasmin Singh, MB, BS, BSc, Mischa Heron, MRCP, FFAEM, and Timothy Coats, MD, FRCS, FFAEM
This Next Slide May Contain The Sexiest Graph You Will See Today
1) Frith et al, J Throm Haemost (2010)
Similar Pattern with Mortality

1) Frith et al, J Throm Haemost (2010)
Potential Mechanism?

* **Protein C**
 - Activated by Thrombin-Thrombomodulin Complex
 - Inhibits Factors 5 & 8
 - Promotes Fibrinolysis

* **Cohen et al**
 - 206 patients
 - Serial Blood Samples at 6, 12, and 24 hrs
 - Stratified by Base Deficit and ISS

Increased Activation of Protein C

* Activated Protein C Levels
* Protein C Levels

* $p < 0.05$
Associated with Decreased Factor 5 & 8

Factor Va Level

Factor VIIIa Level

*p < 0.05
Fibrinolysis

- Fibrinogen
- Crosslinked Fibrin
- Thrombin
- Plasminogen
- Plasmin
- Fibrin degradation products
- tPA
APC Associated with De-Repression of Fibrinolysis

*\(p < 0.05 \)
The Thrombin Switch

SHOCK

THROMBOMODULIN

THROMBIN

THROMBIN-THROMBOMODULIN

PROTEIN C

ACTIVATED PROTEIN C

Fibrinolysis
Fibrinogen & Fibrinolysis

- Fibrinogen concentration falls quickly

- Low fibrinogen predictor of mortality at 24hrs and 28 days\(^1\)

- Degree of fibrinolysis related to mortality\(^2\)

What have we not talked about...

* Platelets
 * Limited knowledge of the role of platelets in Trauma Induced Coagulopathy

* Endothelial Dysfunction
‘Imbalance of the Dynamic Equilibrium Between Procoagulant Factors, Anti-coagulant Factors, Platelets, Endothelium and Fibrinolysis’

Multi-Factorial
- Acute Coagulopathy of Trauma
 - Hyperfibrinolysis
- Factor Deficiency
- (Dilutional)
- (Acidaemia)
- (Hypothermia)

1. Frith and Brohi, Curr Opin Crit Care (2012)
Managing TIC

* Remember
 • Identify the bleeding coagulopathic patient early.
 • Classical tests of coagulation may not detect TIC

* Instigate Damage Control Resuscitation
 • Haemostatic Resuscitation
 • Haemostatic Packaging
 • Minimal, Targeted, Crystalloid Administration
 • Early High Ratio Component Therapy
 • Address Fibrinolysis
 • Point of care coagulation testing
Khan et al 2014
106 patients
 • Median ISS 35 (25-41)
INTERN (International Trauma Research Network)
Lactate and ROTEM analysed at 4, 8 and 12 units PRBC
FFP:PRBC 2:3
Platelets & Cryoprecipitate at 6 PRBC
Hemostatic resuscitation is neither hemostatic nor resuscitative in trauma hemorrhage

Sirat Khan, MD, Karim Brohi, MD, Manik Chana, MD, Imran Raza, MD, Simon Stanworth, MD, Christine Gaarder, MD, PhD, Ross Davenport, MD, PhD, on behalf of the International Trauma Research Network (ITRN), London, United Kingdom

*versus time zero
ROTEM 5min Clot Amplitude (CA5)

ROTEM Mean Clot Firmness (MCF)

ROTEM Clotting Time (CT)
Resuscitation is not an end-point, it is a means to facilitating definitive management.
References (1)

References (2)