Fibrinogen concentrate and ROTEM monitoring to guide blood product use

Dr Michael Fanshawe MBBS(Hons I), FANZCA
Senior Lecturer University of Queensland
Disclosures

NONE
My Journey

1. Fibrinogen is central and important
2. Fibrinogen concentrate.
3. ROTEM
4. Life has got much easier now
Fibrinogen is produced by the liver at 2-5g/d and normal plasma levels are 2 to 4.5g/L.

Depletion begins early in cardiac surgery and is exacerbated by dilution, acidosis, hypothermia, and CPB.

Classical coagulation test are NOT useful post cardiac surgery.
Fibrinogen plays a central role in the coagulation process and clot stabilization. Thrombin cleaves fibrinogen to form fibrin polymers that bind factor XIII to form a robust fibrin network. Fibrinogen also induces platelet activation and aggregation by binding to the platelet fibrinogen receptor glycoprotein IIb/IIIa.

FIBTEM allows decreased fibrinogen function to be detected in 10-15 minutes.
COAGULATION CASCADE

Extrinsic Pathway

- Damage to tissue outside the vessel
- Tissue Thromboplastin

Intrinsic Pathway

- Damage to the blood vessel
- Cascade of clotting factors

- Inactive Factor X
- Activated Factor X

- Prothrombin
- Thrombin

- Fibrinogen
- Fibrin
- Blood Clot

Factor XIII

MECHANISM OF PLATELET ACTIVATION
Options available for fibrinogen replacement and what doses to give.

1. FFP

- Most widely available source of fibrinogen.
- Low and variable levels of fibrinogen.
- Long preparation and administration time.
- Has a large volume.
- Has a significant number of transfusion related complications and is of poor efficacy.

NOT RECOMMENDED AS A SOURCE OF FIBRINOGEN REPLACEMENT.
Options available for fibrinogen replacement and what doses to give.

2. CRYOPRECIPITATE

- Contains fibrinogen (approx 15g/L).
- Small volume per unit.
- Takes time to thaw.
- Significant number of transfusion related risks.
- Standard dose is 10 units.
- Increase in fibrinogen levels is very variable.
- No longer available in Europe.
Options available for fibrinogen replacement and what doses to give.

3. Fibrinogen concentrate

- Freeze dried lyophilized preparations of fibrinogen (Haemocomplettan, Riastap, Clottagen, Fibrinogen HT, Fibroraas).

- Delivers a standard amount of fibrinogen per vial (900-1400mg per vial).

- Fast reconstitution.

- Minimal transfusion related complications.

- No cross match required.

- Half life is 2.7 days.

- Given as a dose of 4-8g (4g usually increases levels by 1g/L).
RiaSTAP® is indicated for the treatment of acute bleeding episodes in patients with congenital fibrinogen deficiency, including afibrinogenaemia and hypofibrinogenaemia.

See Package Insert for Directions.

The vial of RiaSTAP® must be reconstituted with 50 mL Water for Injections.

The vial of RiaSTAP® contains:
Fibrinogen (human) 900–1300 mg
Albumin (human) 400–700 mg
Arginine hydrochloride 375–660 mg
Sodium chloride 200–350 mg
Sodium citrate 50–100 mg

Contents:
1 vial of RiaSTAP®

®Registered Trademark of CSL Limited
Group of Companies
KEEP OUT OF REACH OF CHILDREN

RiaSTAP®

Human Fibrinogen, Powder for Injection

Intravenous Injection Only

1 g

Manufactured by CSL Behring GmbH
35041 Marburg Germany

Distributed and sponsored in Australia by CSL Limited
189 - 209 Camp Road
Broadmeadows Vic 3047 Australia
Customer Service 1800 063 892
RiaSTAP®
Human Fibrinogen, Powder for Injection

Lot no. 35169911A
1 g

Expiry Date
10.2014.
Lot no. 35169911A

KEEP OUT OF REACH OF CHILDREN

Human Fibinogen
1 g

Manufactured by CSL Ltd
35041 Murrumbeena Road
Broadmeadows, Victoria
Australia

Distributed by CSL Ltd
189-191 Havelock Street
West Melbourne, Victoria
Australia
Evidence for the benefit of fibrinogen in CPB related bleeding.

- Studies have compared FFP with fibrinogen concentrate in bleeding patients.

- 18 of 20 studies showed NO reduction in blood loss in the FFP groups.

- Studies with fibrinogen concentrate have shown reduced postoperative blood loss in 60% of patients. One study after CPB 35 of 39 patients required no further products.
Evidence for the benefit of fibrinogen in CPB related bleeding.

- Studies in cardiac surgery have a significant association between FFP and reduced in hospital survival.

- Studies of fibrinogen concentrate consistently show reduced blood loss, reduced allogenic transfusion, reduced ICU and hospital length of stays and increased fibrinogen levels.

- In 5 comparator trials 70% of outcomes with fibrinogen showed a benefit over controls. In 3 studies FFP was the control providing evidence that fibrinogen concentrate is more effective than FFP.
After standard dose of 4-8g of fibrinogen both PT and APTT were significantly improved at 24 and 72 hours.

A recent pilot study has demonstrated targeting bleeding patients post CPB with fibrinogen levels in the low normal range to achieve a concentration in the upper normal range reduced bleeding.

Post CPB median fibrinogen levels fall to 1.5g/L which is borderline for adequate hemostasis. On average fibrinogen levels decrease by 34-42% during CPB.
What is an appropriate fibrinogen level to trigger treatment?

- Increasing data suggests the traditional trigger of 1g/L is too low and 1.5-2g/L is a better trigger.

- FIBTEM guidance provides a real time measure and trigger.

- Only treat if there is also ACTIVE bleeding.
Evidence for the benefit of fibrinogen in CPB related bleeding.

- Pig models of dilutional coagulopathy- fibrinogen deficiency is the first defect observed. CPB studies in humans have shown the same result.

- Patients with high fibrinogen levels have fewer bleeding complications.

- Low preoperative fibrinogen has been shown to be associated with increased postoperative blood loss.
Evidence for the benefit of fibrinogen in CPB related bleeding.

- In porcine models of uncontrolled hemorrhage fibrinogen concentrate improved clot firmness and slowed blood loss.

- Was more effective than platelets even in the presence of thrombocytopenia. (Consistent with the cellular model of coagulation).

- Some evidence that the effect of clopidogrel can be overcome by increasing fibrinogen concentration.
WHEN TO USE FIBRINOGEN CONCENTRATE

INTUITION

BLEEDING PATIENT

LOW FIBRINOGEN

GIVE FIBRINOGEN
Thromboelastometry
Using ROTEM® delta
Normal patient
ROTEM Tests

EXTEM: activation of clot formation by thromboplastin (tissue factor)
Assessment of:
- the factors VII, X, V, II, I
- platelets, fibrinolysis

INTEM: activation of clot formation via the contact phase.
Assessment of:
- the factors XII, XI, IX, VIII, X, V, II, I,
- platelets, fibrinolysis
Activation as in EXTEM with addition of cytochalasin D, a platelet-blocking substance. In the FIBTEM assay fibrinogen levels and fibrin polymerisation can be assessed in a functional way.

EXTEM: $MCF = \Sigma$ Fibrinogen + platelets + F XIII activity

FIBTEM = Normal Result of fibrinogen. No requirement for FFP, cryo-precipitate or fibrinogen. Patient 1 requires Thrombocytes.

FIBTEM = Abnormal result
Patient 2 requires fibrinogen, cryo-precipitate or FFP.
TPCH Cardiac Surgery ROTEM / Multiplate Transfusion Algorithm

Do not treat patient unless there is clinically significant bleeding

Pre Bypass
(treatment with high risk pts, anti-platelet therapy, pre-existing haemostatic abnormalities, etc.)

Drug History - Clopidogrel, Prasugrel, Ticagrelor, Aspirin, Fish Oil, Garlic or Ginseng, etc., within the last 7 days?

Multiplate
ADP - AUC < 30
ASPI - AUC < 20
TRAP - AUC < 50

Yes

Poor Platelet Function

Yes

Consider pre-ordering platelets for possible transfusion post CPSI

Tranexamic Acid

On Bypass (30 minutes before coming off bypass)

FIBTEM - MCF < 5mm

Yes

Low Fibrinogen

Yes

Consider Cryoprecipitate Availability

ExTEM A10 < 30mm

Yes

Poor Platelet Contribution

Yes

Consider Platelet Availability

Post Bypass (10 post protamine)

INTEM - CT > 240 secs
HEPTEM - CT / INTEM - CT < 0.8

Yes

Heparin Effect

Yes

Redosage of Protamine

ExTEM A10 < 40mm
FIBTEM A10 < 10mm

Yes

Low Fibrinogen

Yes

Cryoprecipitate

ExTEM - CT > 90 secs
HEPTEM - CT > 280 secs

Yes

Low Coagulation Factors

Yes

PCC / FFP

ExTEM A10 < 40mm

Yes

Poor Platelet Contribution

Yes

Platelets

FIBTEM A10 > 10mm

Yes

ADP - AUC < 30
ASPI - AUC < 20
TRAP - AUC < 50

Yes

Platelet Dysfunction

Yes

Hyperfibrinolysis

Yes

Tranexamic Acid

Ongoing Bleeding

Optimise

ExTEM - CT < 80 secs AND
A10 FIBTEM > 10mm - AND
A10 ExTEM > 50mm

Consider surgical haemostasis

Version 3

1/12/13
EXTEM & INTEM:
- Normal CT
- Low amplitude

FIBTEM:
- Low amplitude
=> Low fibrinogen

Low amplitude seen in **INTEM & EXTEM**
due to fibringen deficiency

APTEM ≈ EXTEM

=> No hyperfibrinolysis
Preproduct

Rotem Analyser, Tem Innovations

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Value</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>86 s</td>
<td>38 - 79</td>
</tr>
<tr>
<td>CFT</td>
<td>209 s</td>
<td>34 - 159</td>
</tr>
<tr>
<td>A10</td>
<td>34 mm</td>
<td>43 - 65</td>
</tr>
<tr>
<td>A20</td>
<td>42 mm</td>
<td>50 - 71</td>
</tr>
<tr>
<td>α</td>
<td>55</td>
<td>63 - 83</td>
</tr>
<tr>
<td>MCF</td>
<td>46 mm</td>
<td>50 - 77</td>
</tr>
<tr>
<td>L130</td>
<td>100 %</td>
<td>94 - 100</td>
</tr>
</tbody>
</table>

Intern

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Value</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>341 s</td>
<td>100 - 240</td>
</tr>
<tr>
<td>CFT</td>
<td>60 s</td>
<td>30 - 110</td>
</tr>
<tr>
<td>A10</td>
<td>57 mm</td>
<td>44 - 66</td>
</tr>
<tr>
<td>A20</td>
<td>62 mm</td>
<td>50 - 71</td>
</tr>
<tr>
<td>α</td>
<td>78</td>
<td>70 - 83</td>
</tr>
<tr>
<td>MCF</td>
<td>62 mm</td>
<td>50 - 72</td>
</tr>
<tr>
<td>L130</td>
<td>100 %</td>
<td>94 - 100</td>
</tr>
</tbody>
</table>

Fibtem

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Value</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>179 s</td>
<td></td>
</tr>
<tr>
<td>CFT</td>
<td>3 mm</td>
<td>7 - 23</td>
</tr>
<tr>
<td>A10</td>
<td>3 mm</td>
<td>8 - 24</td>
</tr>
<tr>
<td>A20</td>
<td>3 mm</td>
<td>9 - 25</td>
</tr>
<tr>
<td>α</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCF</td>
<td>3 mm</td>
<td></td>
</tr>
<tr>
<td>L130</td>
<td>100 %</td>
<td></td>
</tr>
</tbody>
</table>

Hectem

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Value</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>197 s</td>
<td></td>
</tr>
<tr>
<td>CFT</td>
<td>184 s</td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>35 mm</td>
<td></td>
</tr>
<tr>
<td>A20</td>
<td>42 mm</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>MCF</td>
<td>45 mm</td>
<td></td>
</tr>
<tr>
<td>L130</td>
<td>100 %</td>
<td></td>
</tr>
</tbody>
</table>
The risks and side effects of fibrinogen therapy.

- Thromboembolic complications.

- Risk of thromboembolism from monitoring data appears low but until large trials are conducted this remains a real concern.

- Infection, immune mediated injuries, acute lung injury, and volume overload are much reduced compared with other sources of fibrinogen.
CONCLUSIONS

- Central role in hemostatic process.
- Levels drop quickly in CPB.
- Easy to measure with point of care testing.
- Data suggests it works!!!!!!
- Seems to have good safety profile.
EXTEM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>113</td>
<td>s</td>
<td>38</td>
<td>79</td>
</tr>
<tr>
<td>CFT</td>
<td>84</td>
<td>s</td>
<td>34</td>
<td>159</td>
</tr>
<tr>
<td>A10</td>
<td>55</td>
<td>mm</td>
<td>43</td>
<td>65</td>
</tr>
<tr>
<td>A20</td>
<td></td>
<td>mm</td>
<td>50</td>
<td>71</td>
</tr>
<tr>
<td>α</td>
<td>73</td>
<td>°</td>
<td>63</td>
<td>83</td>
</tr>
<tr>
<td>MCF</td>
<td>* 61</td>
<td>mm</td>
<td>50</td>
<td>72</td>
</tr>
<tr>
<td>LI30</td>
<td></td>
<td>%</td>
<td>94</td>
<td>100</td>
</tr>
</tbody>
</table>

INTEM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>396</td>
<td>s</td>
<td>100</td>
<td>240</td>
</tr>
<tr>
<td>CFT</td>
<td>121</td>
<td>s</td>
<td>30</td>
<td>110</td>
</tr>
<tr>
<td>A10</td>
<td></td>
<td>mm</td>
<td>44</td>
<td>66</td>
</tr>
<tr>
<td>A20</td>
<td></td>
<td>mm</td>
<td>50</td>
<td>71</td>
</tr>
<tr>
<td>α</td>
<td>* 66</td>
<td>°</td>
<td>70</td>
<td>83</td>
</tr>
<tr>
<td>MCF</td>
<td>* 35</td>
<td>mm</td>
<td>50</td>
<td>72</td>
</tr>
<tr>
<td>LI30</td>
<td></td>
<td>%</td>
<td>94</td>
<td>100</td>
</tr>
</tbody>
</table>

FIBTEM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>114</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFT</td>
<td></td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>13</td>
<td>mm</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>A20</td>
<td></td>
<td>mm</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>α</td>
<td></td>
<td>°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCF</td>
<td>* 13</td>
<td>mm</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>LI30</td>
<td></td>
<td>%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>