Oxygen Therapy with Limited Resources
COVID-19 Severe Acute Respiratory Infection (SARI) and Pneumonia

Key points
1. Practical oxygen therapy.
2. Prevent infections in hospital staff.

Suspect and confirm diagnosis of COVID-19 infection
- Case definition, clinically or if available by laboratory test.
- Start infection prevention and control (IPC) measures. Put a simple surgical facemask on the patient. Leave it in place to reduce the spread of the virus to staff and other patients.
- Consider IPC issues of staff personal protection equipment (PPE), medical equipment and COVID-19 hospital areas.

Suspect (severe) pneumonia and confirm need for oxygen
- Adult or adolescent with fever or suspected respiratory infection, plus one of: respiratory rate > 22 breaths/min; severe respiratory distress; altered mental status or SpO$_2$ < 90% on room air.
- Child with cough or difficulty in breathing, plus at least one of the following: central cyanosis or SpO$_2$ < 90%; severe respiratory distress (e.g. grunting, very severe chest indrawing); signs of pneumonia with a general danger sign: inability to breast feed or drink, lethargy or unconsciousness, or convulsions. Other signs of pneumonia may be present: chest indrawing, fast breathing (in breaths/min): < 2 months ≥ 60; 2–11 months ≥ 50; 1–5 years ≥ 40.

Confirm hypoxia with pulse oximeter
- Start oxygen therapy if SpO$_2$ < 90%. Use oxygen delivery device: nasal cannula (prongs) or nasal catheter or face mask.
- Nasal prongs recommended for child < 5 years.
- Keep simple surgical facemask on patient, over nasal prongs and under any type of oxygen face mask. This reduces viral spread to staff and other patients.
- Adjust O$_2$ flow to target SpO$_2$ > 90% adults & children. If signs of multi-organ failure including shock or alteration of mental status SpO$_2$ > 94%. In pregnant patients target SpO$_2$ > 92 - 95%.
- If the target SpO$_2$ > 90% cannot be achieved, or if SpO$_2$ < 90%, suspect Acute Respiratory Distress Syndrome (ARDS). Consider nursing patient in the prone position for periods with a pillow under the chest. This may avoid the need for mechanical ventilation.
- If the SpO$_2$ does not improve, advanced oxygen therapy and mechanical ventilation are required. If possible these patients should to be moved to another ward for management of intubation, oxygenation and ventilation. IPC measures with intubation, airway nursing care and ventilation are vital.
Oxygen delivery devices

Titrated O_2 flow with SpO_2. Do not waste oxygen.

<table>
<thead>
<tr>
<th>Device</th>
<th>O_2 Flow Rate</th>
<th>FiO_2 Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal prongs</td>
<td>1 – 5 L/min</td>
<td>FiO_2 28% - 40% child and adult</td>
</tr>
<tr>
<td>Nasopharyngeal catheter</td>
<td>1 – 2 L/min</td>
<td>FiO_2 45% - 60% infant and child</td>
</tr>
<tr>
<td>Oxygen face mask</td>
<td>6 – 10 L/min</td>
<td>FiO_2 44% - 60% child and adult</td>
</tr>
<tr>
<td>Oxygen face mask reservoir bag</td>
<td>10 – 15 L/min</td>
<td>FiO_2 60% - 95%</td>
</tr>
<tr>
<td>Venturi oxygen face mask</td>
<td>4 – 15 L/min</td>
<td>(for Venturi O_2 flow rate FiO_2 device specific) FiO_2 24% - 60%</td>
</tr>
</tbody>
</table>

Caution: † aerosolised droplet spread with high flow O_2 from all devices. Keep simple surgical facemask over prongs or under oxygen mask at all times. Humidification should never be used: † viral spread and equipment may be contaminated.

The resource limitations are oxygen supply or availability of oxygen delivery devices

- Assess and monitor oxygen supply.
- Consider disinfection of nasal prongs, catheters and face masks. Infection prevention and control (IPC) measures are very important with contaminated medical equipment.

Oxygen supply

Oxygen concentrators produce 4 – 10 L/min O_2.

Cylinders may not easily be refilled. Consider IPC measures if cylinder is at the bedside.

Bulk supply may not be available.

Decontamination and Disinfection

Decontaminate by mechanically cleaning oxygen delivery devices of secretions and mucus. Disinfect with 70% (ethyl or isopropyl) alcohol or soak in 0.1% sodium hypochlorite solution (1000 ppm available chlorine) for 30 minutes.

Preparation of 0.1% sodium hypochlorite solution

Dilute household bleach (widely available), usually 5% = 5g sodium hypochlorite /100ml 1:50 with tap water. Add 1 measure of bleach to 49 measures of tap water. 5% sodium hypochlorite contains 50,000 ppm available chlorine, and the dilution contains 1000 ppm.

Check the concentration of the bleach sodium hypochlorite on label (in g/100ml) and adjust dilutions accordingly. For example: 2.5% sodium hypochlorite bleach contains 2.5g sodium hypochlorite /100ml. To 1 measure of bleach add 24 measures tap water. 4.2% sodium hypochlorite bleach contains 4.2g sodium hypochlorite /100ml. To 1 measure of bleach add 41 measures tap water. The dilutions all contain 1000 ppm available chlorine.

Prepare a container of solution in a well ventilated place. Avoid direct contact with eyes. Store covered, cool and shaded. Discard at 24 hours. Do not mix with detergents. Thoroughly rinse the oxygen delivery devices before reuse.
References:
1. Infection prevention and control during health care when COVID-19 is suspected. Interim guidance 19 March 2020 WHO
2. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected. Interim guidance 13 March 2020 WHO

Authors:
Dr Haydn Perndt AM FFARCS FANZCA MPH &TM
Clinical Associate Professor, School of Medicine, University of Tasmania, Australia.
haydn.perndt@utas.edu.au

Dr Michael Cooper AM MB BS FANZCA FFPMANZCA
Senior Anaesthetist, The Children's Hospital, Westmead & St. George Hospital, Kogarah, Sydney, Australia.
Adjunct Professor of Anaesthesiology, School of Medicine and Health Sciences, University of Papua New Guinea.
mcoops59@gmail.com

Dr Georgina Phillips MBBS FACEM
Emergency Physician, St Vincent’s Hospital, Melbourne, Australia. PhD Scholar, School of Public Health and Preventative Medicine, Monash University. Global Emergency Care Committee, ACEM.
drgeorgina@gmail.com

TJ Coonan MD FRCP(C)
Professor of Anesthesia and Surgery. Former Chair of Anesthesia, Dalhousie University, Halifax Nova Scotia, Canada.
tjcoonan@gmail.com
Oxygen Therapy with Limited Resources
COVID-19 Severe Acute Respiratory Infection (SARI) and Pneumonia

KEY POINTS
- Practical oxygen therapy
- Prevent infections in hospital staff

Suspect and Confirm Diagnosis of Covid-19 Infection
- Diagnose by case definition, clinically, by laboratory test
- Put a simple surgical facemask on patient
- Start infection prevention and control (IPC) measures
- Consider staff personal protection equipment (PPE), disinfect medical equipment and dedicated Covid-19 hospital spaces

Suspect Severe Pneumonia and Confirm Need for Oxygen
- Respiratory signs and symptoms
- Adult or adolescent $\text{SpO}_2 < 90\%$
- Child $\text{SpO}_2 < 90\%$

Confirm Hypoxia by Pulse Oximeter
- Start oxygen therapy if $\text{SpO}_2 < 90\%$
- Nasal cannula (prongs) or nasal catheter or face mask
- Nasal prongs for child < 5 years
- Adjust O_2 flow to target $\text{SpO}_2 > 90\%$
- Try prone position - pillow under chest
- If SpO_2 not↑ or <<90\% → advanced oxygen/ventilator care needed

Cautions
- Keep surgical facemask over prongs/under oxygen mask
- Droplet spread with high flow O_2 from all devices
- No humidification to be used

Oxygen Delivery Devices
- Nasal prongs O_2 1–5 L/min ✅
- Nasal catheter O_2 1–2 L/min (infant & child) ✅
- Oxygen face mask O_2 6–10 L/min ✅✅
- Oxygen face mask reservoir bag O_2 10-15 L/min ✅✅✅
 Make sure reservoir bag inflates
- Venturi oxygen face mask O_2 4–15 L/min ✅✅✅
 O_2 flow rate device specific

Resource Limitations
- Oxygen supply or the availability of oxygen delivery devices
- Assess and monitor oxygen supply
- Consider disinfection of prongs and masks

Decontamination and Disinfection
- Physical cleaning
- Soak in 0.1% sodium hypochlorite solution for 30 minutes
 Contains 1000 ppm available chlorine

Preparation of 0.1% Sodium Hypochlorite Solution
Check concentration of sodium hypochlorite in household bleach contains 5% or 5g/100ml sodium hypochlorite (= 50,000 ppm chlorine). Dilute bleach 1:50 with tap water. One measure of bleach to 49 measures of tap water makes 0.1% solution = 1000 ppm chlorine. If bleach concentration is less, dilute accordingly to give 0.1% solution = 1000 ppm chlorine. Prepare a bucket in a well ventilated place. Store covered in a cool shaded place and discard at 24 hours. Do not mix with detergents. Avoid contact with eyes.
Thoroughly rinse the oxygen delivery devices before reuse.