General Anaesthesia
Normothermia

Dr David Rowe FANZCA
VMO Anaesthetist
Armidale Rural Referral Hospital
Rural SIG meeting Cradle Mountain July 2015
Enhanced Recovery after Surgery

* Outline
 * ERAS & General Anaesthesia
 * Anaesthesia
 * Analgesia
 * Muscle relaxation
 * Normothermia
 * Definitions
 * Hypothermia - Risk Factors and Consequences
 * Active and Passive Measures
ERAS and General Anaesthesia

- Traditional Triad
 - Anaesthesia
 - Induction and Maintenance
 - Analgesia
 - Covered by Dr Lemech
 - Muscle Relaxation
 - Muscle Relaxants
 - Reversal

- Aims
 - Short acting agents allow rapid wake up
 - Control Metabolic Stress
 - Fluids
 - Analgesia
 - Reduce haemodynamic fluctuation
* **Induction Agents**
 * Propofol – recommended by ERAS as short acting
 * Thiopentone – Becoming dated / Rapid Sequence?
 * Short acting Opioids – Fentanyl / Remifentanil infusion

* **Maintenance**
 * Volatiles – Sevoflurane / Desflurane (obese)
 * TIVA – with propofol if Hx of PONV
 * No Mention of N₂O
Muscle Relaxation

* **Benefits**
 * Deep blockade enables good surgical access

* **Agents**
 * Amino Steroids – Rocuronium / Vecuronium
 * Benzylisoquinolininiums – Atracuriom / Cisatracurium

* **Pit falls**
 * Anaphylaxis risk – Pholcodine use and Rocuronium
 * UK NAP5 – Accidental Awareness Under General Anaesthesia
 * Miss match of Anaesthesia and paralysis
 * Unholy TRIAD
 * Relaxants / No reversal / No Monitoring
Muscle Relaxation

* Peripheral Nerve Stimulator
 * Train of Four
 * Deep No twitches / Post tetanic count
 * 1 to 4 twitches – reversible
 * Fade – adequate reversal of $4^{th} > 70\%$ of First

* Reversal
 * Traditional – Neostigmine / AntiCholinergic
 * Novel – Sugammadex – Rocuronium
 * Immediate – 16mg/Kg
 * End of case – 2-4mg/Kg
Monitoring

- Standard Anaesthesia Monitoring
 - BP / ECG / Pulse Oximeter
- Haemodynamic Monitoring
 - Oesophageal Doppler?
- Depth of Anaesthesia Monitoring
 - Entropy / BIS
 - Optimise depth of anaesthesia
 - Prevent Awareness in paralysed patients?
 - Too deep – Post op confusion and harm?
Normothermia – Avoiding hypothermia

* Definitions
 * Heat
 * Thermal energy in the body
 * Temperature
 * Average thermal energy per unit mass
 * Normal temperature – 36.5 – 37.5°C
 * Hypothermia – Core Temperature <36°C
Heat Distribution

- Core Compartment
 - 66% Body Mass
 - Central Organs
 - Tightly controlled
- Peripheral Compartment
 - 34% Body Mass
 - Heat sink
 - Varies 28-36°C
Anaesthesia and Temperature

- Redistribution
- Vasodilation
- Linear Phase
 - Radiation 40%
 - Convection 30%
 - Conduction 5%
 - Evaporation 15%
 - Respiratory 10%
- Plateau
 - Vasoconstriction
Hypothermia – Clinical Consequences

- **Bleeding**
 - Clotting factors are enzymes
- **Morbidity**
 - Myocardial / Cerebral Ischaemia
 - Cardiac Arrhythmias
- **Decreased drug metabolism**
- **Infection**
- **Shivering**
- **Pain Scores** – worse if hypothermic
Avoiding Hypothermia

* Prevention is better than cure
* UK NICE 2008 Guidelines – At risk if 2 of
 * ASA II-V
 * Pre-operative Temperature <36°C
 * Combined General and Regional Anaesthesia
 * Major / Intermediate Surgery
 * Cardiovascular complication risk
Avoiding Hypothermia

Active Measures
- Deliver Heat to Patients
 - Forced Air Warming Blankets
 - Warming Mattresses

Passive Measures
- Reduce Heat lost
 - Blankets / reflective foil
 - Warm fluids – Crystalloids / Blood
 - Humidified Gasses
 - Respiration / Laparoscopy
Active Warming

* Pre-Warming
 * Max temp setting
 * Approx 1hr
 * Raise periphery to core temperature

* Intra-Op
 * Aim to maintain @ 36.5°C

* Post-Op
 * Continue if hypothermic until normothermia achieved
Summary

* Optimise pre-operative temperature
* Avoid excessive exposure
* Ensure fluids and gasses are warmed

* Maintenance of normothermia may reduce
 * Bleeding / Infection / Cardiac complications